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This report is a summary of research supported by NASA Grant NAGW 2832.

A. Progress Under NASA Grant NAGW 2832

We have been studying the dissociative recombination (DR) of Hell ÷ with an electron with the

goal of calculating accurate cross sections and rate coefficients to allow for the accurate

modelling of the abundance of Hell ÷ in planetary nebulae and supernova envelopes. A unique

feature of the Hell potential curves is that none of the neutral states cross the ion curve. This

required a new approach to the calculation of DR cross sections and rate coefficients that had not

yet appeared in the literature. Because of the lack of a potential curve crossing, the initial

electron capture occurs by Born-Oppenheimer breakdown, i.e. by the interaction of the motion

of the incoming electron with the nuclear motion. This same mechanism also drives DR in H_

and the methods developed and described below for HeW DR will be used for the future

calculation of H_ DR.

1. Potential Energy Curves

Under current NASA support, potential curves for the ground state of Hell ÷ and for the neutral

states that are relevant to DR have been calculated using large scale Gaussian basis sets and

multireference configuration interaction (CI) wave functions. The wave functions were calculated

using atom centered Gaussian basis sets. At both the He and the H, a [4s,3p,2d] contracted basis

set was used supplemented with a single 4f primitive function. On the H, three diffuse s functions

and four diffuse p functions were added for the description of the Rydberg states. The orbitals

were determined in Self Consistent Field (SCF) calculations. A reference set of configurations

for a CI wave function was generated by taking all single and double excitations in the space of

the lowest energy Px and py orbitals and the six lowest energy s orbitals. The CI was generated

by taking all single and double excitations from each member of the reference set. For these

small systems it is possible to calculate exceedingly accurate potential curves and the curves

reported here are the most accurate Hell curves calculated to date. The calculated o)e and o)exe

values for the ion differ from the experimental values by only 7cm _. The R e values differ by only

0.0008a o and the dissociation energies (D e) differ by only 0.0016eV from experiment. For the A

and C 2 E+states of Hell, the o)e values differ from the experimental values by less than 19cm t.

For the A state, the calculated R e agrees with the experimental value to 4 decimal places. The

calculated Re for the C state is 0.0036a o smaller than the experimental value. The energy
differences between the bottom of the calculated ion well and the bottom of the A, C, and D state

wells differ from the experimental values by only 198, 86 and 97cm _ respectively. These highly

accurate results are needed to calculate accurate cross sections and rates. The calculated potential

curves are shown in Figure 1.

As discussed above, there are no dissociative potential curves that cross the ion. Energetically

however, there are three states that can provide routes for DR. These are the ground state and

the A and C Rydberg states. The latter two states dissociate to the He+H(n=2) limit which is

1.55eV below the v=0 level of the ion. An electron can be captured by v=0 Hell ÷ directly into

the X, A, or C states followed by dissociation along these states. Indirect recombination may also

occur in which the electron is captured initially into a vibrationally excited Rydberg state. The
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Figure 1. The calculated Hell dissociative potential energy curves (solid),

the n=3 Rydberg states (dashed) and the Hell ÷ ground state (solid) with the
v=0 level are shown.
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Figure 2. The calculated direct (dashed line) and full (solid

line) cross sections for 4Hell+ DR.
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Rydberg state can autoionize or can be predissociated by the X, A, or C states. For the low

energy electrons, the D and 3pEE÷states (with principal quantum number n=3) are the lowest

Rydberg states that can be intermediate states in indirect recombination. For the D and 3p states,

vibrational levels with v=6 and v=4 respectively lie above the v=0 level of the ion and will be

the origin of structure in the DR cross section. For higher n states, lower vibrational levels can

play a role in indirect DR. These states cause the structure in the DR cross sections discussed
below.

2. Cross Sections and Rates

The full cross sections including the resonance states have been calculated using a

Multichannel Quantum Defect Theory Approach (MQDT)(Guberman and Giusti-Suzor, 1991;

Guberman, 1994) modified to handle the derivative couplings needed to describe Born-

Oppenheimer breakdown and revised to handle multiple dissociative states and multiple values

for the electron angular momentum. This approach handles both direct and indirect recombination

simultaneously and allows both to interfere with each other. The MQDT approach is quite

powerful and can handle large numbers of intermediate resonance states without difficulty.

Interference between Rydberg vibrational levels belonging to different electronic states leading

to "complex resonances" is fully described. The calculated cross section is shown in Figure 2.

The direct cross section omits the resonance states, i.e. the vibrationally excited Rydberg levels,

and is close to a straight line. The

sharp structure seen in the full cross
section is due to the resonances that

we label by (n,v,Q) where n is the

principal quantum number, v is the

vibrational level and _ is the angular

momentum of the free electron. The

structure at low energies is dominated

by the (3,4,1) level near 0.014eV

followed at higher energies by the

(6,1,1), (3,6,0), (7,1,0), and (4,3,0)

levels. The rate is shown in Figure 3.

The (3,4,1) level plays an important

role in determining the shape of the

plot. Above 20K, the full rate is
above the direct rate due to the

intermediate Rydberg resonance
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Figure 3. The calculated direct (dashed) and full (solid)
DR rates for 4Hell.

states. The full rate rises rapidly between 20 and 100K to a plateau between 100 and 300K. For

200<Te<400K, the rate is 6.2 x 10-9 X (Te/300)°tacm3/sec. We have also done calculations on

3Hell. The rate for 3Hell DR is 2.6 x lif e x (Te/300)-°aTcm3/sec. The rate increases as the

isotopomer reduced mass decreases.

These results on both 4Hell and 3Hell have implications for H_. For H_, we can also expect

that the lightest isotope, i.e. H_, will have the highest rate compared to deuterium or tritium

containing species. If we fuse two of the H atoms in H 3 together we get the fictitious molecule,



2Hell. The full calculatedrate for 2Hell is 3.6 x 10Tcm3/sec indicating that this mechanism in

combination with light reduced masses can yield high DR rates. In n 3, in Czv symmetry, attention

will focus on the lowest 2A l and 2B 2 valence states formed by pulling apart the He in 2Hell.

In summary, we have found that nonnegligible DR rates can occur even in cases where the

dissociative curves do not cross the ion curve. Electron capture occurs by Born-Oppenheimer

breakdown. Our calculations agree with both the CRYRING storage ring experiment (G.

Sundstrom, et al., 1994) and with the TARN II (Tanabe et al., 1993) storage ring experiment that

detects almost entirely H(n=2) dissociation products supporting our assignment of the C 2E÷ state

as the primary dissociative route.
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